c64-livecoding/wip-hugo/routines/line/line_down.s

126 lines
4.2 KiB
ArmAsm

;;; -*- Mode: asm; indent-tabs-mode: t; tab-width: 8 -*-
;;drawing line from 2 cordinates
;;# (X_pos, Y_pos) #
;;# * #
;;# * #
;;# * #
;;# (X_end, Y_end) #
;;NOTE THAT X_pos <= X_end, Y_pos <= Y_end. Max 45deg!
.proc line_down
;; TEMPORARY
;; Hack because changing dx and dy makes other line draws bugg and idk why
;; This is offcorse temporary
;.include "line.inc"; Defines memory positions, ex X_pos
X_end = $04
Y_end = $05
X_pos = $FC
Y_pos = $FB
dx = $0c
dy = $06
dy_2 = $0607
dx_2 = dy_2
V = $0809
D = $0a0b
;;These are also used in pixel_draw. Look there to find out more
byte_to_paint = $FE ;Byte with one 1 that corasponds to a pixel.
btp_mem_pos =$494A; byte to paint memory position ;Position of byte on screen
;;END TEMPORARY
;;We need to clear this memory
LDA #$00
STA <V
STA <dy_2
STA $FD ; for pixel_draw
;; V = 2*(dx -dy)
SEC
LDA dx
SBC dy
STA >V
mult_16 >V, <V
;dy_2 = dy*2
mult_16 >dy_2, <dy_2 ;>dy_2 = dy (same address)
;; This is an Bresenham's line algorithm, se wikipedia bellow.
;;https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
;; We need to compute the Value D = 2*dy - dx,
;; but it may be or get negative.
;; IN the loop we may set D = D -V
;; Because math D needs to be at least >=V.
;; V_max = %00000001 11111111
;; We therefor need to add this offset to V 00000001 11111111
;; and to its branch logic later in the loop.
;;D = 2*dy - dx + 2*255
Mov_16 >D, <D, >dy_2, <dy_2
Add_16 >D, <D, #$ff, #$01, !
Sub_16 >D, <D, dx, #$00
jsr pixel_draw ;;only used first pixel. after this relative position is abused
LDX X_pos
selfmod:
;; Self modifying code. Makes LDA and SBC instructions each take 1 cycle less.
;; You can remove this if you run the loop without # at dy_2 and V.
;;Note: The offsets like +2 etc is because there are instructions betwean the label and the
;address that needs to be modified
;; dy_2
;; Modifies LDA >dy_2
LDA >dy_2
STA case_2 +1
;; Modifies LDA <dy_2
LDA <dy_2
STA case_2 +7
;; V
;;Modidies SBC >V
LDA >V
STA case_1 +3
;; Modifies SBC <V
LDA <V
STA case_1 +9
end_selfmod:
for_x:
;; Paints A to address in |btp_mem_pos* + Y|
;; Y is pixel position in the chunk. Therefor it may be that Y = 0, 1, 2, 3, 4, ,5 ,6 ,7.
LDA byte_to_paint ;A byte containing a single 1. Coresponds to X position in the chunk.
ORA (>btp_mem_pos), Y
STA (>btp_mem_pos), Y
increment_pixel_x:
LSR byte_to_paint ; Rotates the pixel one bit to the left ON THE SCREEN.
BCC increment_pixel_x_end; We need to move to the next chunk
move_8px_left:
;; Next chunk is 8 addresses away. Look in pixel_draw for more detail.
Add_16 >btp_mem_pos, <btp_mem_pos, #$08, #$00
;; Restores byte to paint
LDA #%10000000
STA byte_to_paint
increment_pixel_x_end:
INX
CPX X_end
BEQ end ;We keep track on when to stop line draw with the X registry.
;;If D < %00000010 00000000: case_2
;;else case 1.
Lag_16 >D, <D, #$00, #$02, case_2
case_1:; C =1 so we can use !
Sub_16 >D, <D, #>V, #<V, ! ; D = D - V
increment_y_pos:
INY ; Increment Y pos inside the buffer
CPY #$08
BNE for_x
move_8px_down: ; Z=1 --> C=1
LDY #$00
;; Switch to chunk bellow
Add_16 >btp_mem_pos, <btp_mem_pos, #$40, #$01; +320
JMP for_x
increment_y_pos_end:
case_2: ;; C =0 because LAG_16 so we can use !
Add_16 >D, <D, #>dy_2, #<dy_2, ! ;D = D + 2*dy
JMP for_x
end:
RTS
.endproc