Added unfinished miniaudio audio backend

Currently only works with CMake
This commit is contained in:
Clownacy 2020-02-29 11:46:11 +00:00
parent 934054806e
commit 8ec8a8d990
3 changed files with 36681 additions and 1 deletions

View file

@ -14,6 +14,7 @@ option(JAPANESE "Enable the Japanese-language build (instead of the unofficial A
option(FIX_BUGS "Fix various bugs in the game" OFF)
option(DEBUG_SAVE "Re-enable the ability to drag-and-drop save files onto the window" OFF)
set(RENDERER "SDLTexture" CACHE STRING "Which renderer the game should use: 'OpenGL3' for an OpenGL 3.2 renderer, 'OpenGLES2' for an OpenGL ES 2.0 renderer, 'SDLTexture' for SDL2's hardware-accelerated Texture API, 'SDLSurface' for SDL2's software-rendered Surface API, or 'Software' for a handwritten software renderer")
set(AUDIO_BACKEND "SDL2" CACHE STRING "Which audio backend the game should use: 'SDL2', 'miniaudio'")
option(LTO "Enable link-time optimisation" OFF)
option(NATIVE_OPTIMIZATIONS "Enable processor-specific optimisations (executable might not work on other architectures) (GCC-compatible compilers only)" OFF)
@ -201,7 +202,6 @@ add_executable(CSE2
src/ValueView.h
src/WindowsWrapper.h
src/Backends/Rendering.h
src/Backends/Audio/SDL2.cpp
src/Backends/Audio.h
)
@ -360,6 +360,14 @@ else()
message(FATAL_ERROR "Invalid RENDERER selected")
endif()
if(AUDIO_BACKEND MATCHES "SDL2")
target_sources(CSE2 PRIVATE "src/Backends/Audio/SDL2.cpp")
elseif(AUDIO_BACKEND MATCHES "miniaudio")
target_sources(CSE2 PRIVATE "src/Backends/Audio/miniaudio.cpp")
else()
message(FATAL_ERROR "Invalid AUDIO_BACKEND selected")
endif()
# Make some tweaks if we're targetting Windows
if(WIN32)
target_sources(CSE2 PRIVATE "${ASSETS_DIRECTORY}/resources/CSE2.rc")

36296
external/miniaudio.h vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,376 @@
#include "../Audio.h"
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MINIAUDIO_IMPLEMENTATION
#define MA_NO_DECODING
#include "miniaudio.h"
#include "../../Organya.h"
#include "../../WindowsWrapper.h"
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define CLAMP(x, y, z) MIN(MAX((x), (y)), (z))
#ifdef __GNUC__
#define ATTR_HOT __attribute__((hot))
#else
#define ATTR_HOT
#endif
struct AudioBackend_Sound
{
unsigned char *samples;
size_t frames;
double position;
double advance_delta;
BOOL playing;
BOOL looping;
unsigned int frequency;
float volume;
float pan_l;
float pan_r;
float volume_l;
float volume_r;
struct AudioBackend_Sound *next;
};
static AudioBackend_Sound *sound_list_head;
static ma_device device;
static ma_mutex mutex;
static ma_mutex organya_mutex;
static unsigned long output_frequency;
static unsigned short organya_timer;
static double MillibelToScale(long volume)
{
// Volume is in hundredths of decibels, from 0 to -10000
volume = CLAMP(volume, -10000, 0);
return pow(10.0, volume / 2000.0);
}
static void SetSoundFrequency(AudioBackend_Sound *sound, unsigned int frequency)
{
sound->frequency = frequency;
sound->advance_delta = (double)frequency / (double)output_frequency;
}
static void SetSoundVolume(AudioBackend_Sound *sound, long volume)
{
sound->volume = (float)MillibelToScale(volume);
sound->volume_l = sound->pan_l * sound->volume;
sound->volume_r = sound->pan_r * sound->volume;
}
static void SetSoundPan(AudioBackend_Sound *sound, long pan)
{
sound->pan_l = (float)MillibelToScale(-pan);
sound->pan_r = (float)MillibelToScale(pan);
sound->volume_l = sound->pan_l * sound->volume;
sound->volume_r = sound->pan_r * sound->volume;
}
// Most CPU-intensive function in the game (2/3rd CPU time consumption in my experience), so marked with attrHot so the compiler considers it a hot spot (as it is) when optimizing
ATTR_HOT static void MixSounds(float *stream, unsigned int frames_total)
{
ma_mutex_lock(&mutex);
for (AudioBackend_Sound *sound = sound_list_head; sound != NULL; sound = sound->next)
{
if (sound->playing)
{
float *steam_pointer = stream;
for (unsigned int frames_done = 0; frames_done < frames_total; ++frames_done)
{
// Get two samples, and normalise them to 0-1
const float sample1 = (sound->samples[(size_t)sound->position] - 128.0f) / 128.0f;
const float sample2 = (sound->samples[(size_t)sound->position + 1] - 128.0f) / 128.0f;
// Perform linear interpolation
const float interpolated_sample = sample1 + ((sample2 - sample1) * fmod((float)sound->position, 1.0f));
*steam_pointer++ += interpolated_sample * sound->volume_l;
*steam_pointer++ += interpolated_sample * sound->volume_r;
sound->position += sound->advance_delta;
if (sound->position >= sound->frames)
{
if (sound->looping)
{
sound->position = fmod(sound->position, (double)sound->frames);
}
else
{
sound->playing = FALSE;
sound->position = 0.0;
break;
}
}
}
}
}
ma_mutex_unlock(&mutex);
}
static void Callback(ma_device *device, void *output_stream, const void *input_stream, ma_uint32 frames_total)
{
(void)device;
(void)input_stream;
float *stream = (float*)output_stream;
ma_mutex_lock(&organya_mutex);
if (organya_timer == 0)
{
MixSounds(stream, frames_total);
}
else
{
// Synchronise audio generation with Organya.
// In the original game, Organya ran asynchronously in a separate thread,
// firing off commands to DirectSound in realtime. To match that, we'd
// need a very low-latency buffer, otherwise we'd get mistimed instruments.
// Instead, we can just do this.
unsigned int frames_done = 0;
while (frames_done != frames_total)
{
static unsigned long organya_countdown;
if (organya_countdown == 0)
{
organya_countdown = (organya_timer * output_frequency) / 1000; // organya_timer is in milliseconds, so convert it to audio frames
UpdateOrganya();
}
const unsigned int frames_to_do = MIN(organya_countdown, frames_total - frames_done);
MixSounds(stream + frames_done * 2, frames_to_do);
frames_done += frames_to_do;
organya_countdown -= frames_to_do;
}
}
ma_mutex_unlock(&organya_mutex);
}
BOOL AudioBackend_Init(void)
{
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.pDeviceID = NULL;
config.playback.format = ma_format_f32;
config.playback.channels = 2;
config.sampleRate = 44100;
config.dataCallback = Callback;
//config.pUserData = NULL;
output_frequency = 44100;
if (ma_device_init(NULL, &config, &device) != MA_SUCCESS)
{
printf("Fail\n");
return FALSE;
}
if (ma_mutex_init(device.pContext, &mutex) != MA_SUCCESS)
{
printf("Fail2\n");
return FALSE;
}
if (ma_mutex_init(device.pContext, &organya_mutex) != MA_SUCCESS)
{
printf("Fail3\n");
return FALSE;
}
ma_device_start(&device);
return TRUE;
}
void AudioBackend_Deinit(void)
{
ma_device_stop(&device);
ma_mutex_uninit(&organya_mutex);
ma_mutex_uninit(&mutex);
ma_device_uninit(&device);
}
AudioBackend_Sound* AudioBackend_CreateSound(unsigned int frequency, size_t frames)
{
AudioBackend_Sound *sound = (AudioBackend_Sound*)malloc(sizeof(AudioBackend_Sound));
if (sound == NULL)
return NULL;
sound->samples = (unsigned char*)malloc(frames + 1);
if (sound->samples == NULL)
{
free(sound);
return NULL;
}
sound->frames = frames;
sound->playing = FALSE;
sound->position = 0.0;
SetSoundFrequency(sound, frequency);
SetSoundVolume(sound, 0);
SetSoundPan(sound, 0);
ma_mutex_lock(&mutex);
sound->next = sound_list_head;
sound_list_head = sound;
ma_mutex_unlock(&mutex);
return sound;
}
void AudioBackend_DestroySound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
for (AudioBackend_Sound **sound_pointer = &sound_list_head; *sound_pointer != NULL; sound_pointer = &(*sound_pointer)->next)
{
if (*sound_pointer == sound)
{
*sound_pointer = sound->next;
free(sound->samples);
free(sound);
break;
}
}
ma_mutex_unlock(&mutex);
}
unsigned char* AudioBackend_LockSound(AudioBackend_Sound *sound, size_t *size)
{
if (sound == NULL)
return NULL;
ma_mutex_lock(&mutex);
if (size != NULL)
*size = sound->frames;
return sound->samples;
}
void AudioBackend_UnlockSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_unlock(&mutex);
}
void AudioBackend_PlaySound(AudioBackend_Sound *sound, BOOL looping)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
sound->playing = TRUE;
sound->looping = looping;
sound->samples[sound->frames] = looping ? sound->samples[0] : 0x80; // For the linear interpolator
ma_mutex_unlock(&mutex);
}
void AudioBackend_StopSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
sound->playing = FALSE;
sound->position = 0.0;
ma_mutex_unlock(&mutex);
}
void AudioBackend_RewindSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
sound->position = 0.0;
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetSoundFrequency(AudioBackend_Sound *sound, unsigned int frequency)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
SetSoundFrequency(sound, frequency);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetSoundVolume(AudioBackend_Sound *sound, long volume)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
SetSoundVolume(sound, volume);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetSoundPan(AudioBackend_Sound *sound, long pan)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
SetSoundPan(sound, pan);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetOrganyaTimer(unsigned short timer)
{
ma_mutex_lock(&organya_mutex);
organya_timer = timer;
ma_mutex_unlock(&organya_mutex);
}