cave-story-solaris/src/Backends/Audio/miniaudio.cpp
2020-06-24 01:15:21 +01:00

287 lines
6 KiB
C++

#include "../Audio.h"
#include <stddef.h>
#define MINIAUDIO_IMPLEMENTATION
#define MA_NO_DECODING
#define MA_API static
#include "../../../external/miniaudio.h"
#include "../Misc.h"
#include "SoftwareMixer.h"
#define MIN(a, b) ((a) < (b) ? (a) : (b))
static ma_context context;
static ma_device device;
static ma_mutex mutex;
static ma_mutex organya_mutex;
static unsigned long output_frequency;
static void (*organya_callback)(void);
static unsigned int organya_callback_milliseconds;
static void Callback(ma_device *device, void *output_stream, const void *input_stream, ma_uint32 frames_total)
{
(void)device;
(void)input_stream;
short *stream = (short*)output_stream;
ma_mutex_lock(&organya_mutex);
if (organya_callback_milliseconds == 0)
{
ma_mutex_lock(&mutex);
Mixer_MixSounds(stream, frames_total);
ma_mutex_unlock(&mutex);
}
else
{
// Synchronise audio generation with Organya.
// In the original game, Organya ran asynchronously in a separate thread,
// firing off commands to DirectSound in realtime. To match that, we'd
// need a very low-latency buffer, otherwise we'd get mistimed instruments.
// Instead, we can just do this.
unsigned int frames_done = 0;
while (frames_done != frames_total)
{
static unsigned long organya_countdown;
if (organya_countdown == 0)
{
organya_countdown = (organya_callback_milliseconds * output_frequency) / 1000; // organya_timer is in milliseconds, so convert it to audio frames
organya_callback();
}
const unsigned int frames_to_do = MIN(organya_countdown, frames_total - frames_done);
ma_mutex_lock(&mutex);
Mixer_MixSounds(stream + frames_done * 2, frames_to_do);
ma_mutex_unlock(&mutex);
frames_done += frames_to_do;
organya_countdown -= frames_to_do;
}
}
// Clamp output, and convert from 8-bit to 16-bit
for (unsigned int i = 0; i < frames_total * 2; ++i)
{
if (stream[i] > 0x7F)
stream[i] = 0x7F00;
else if (stream[i] < -0x7F)
stream[i] = -0x7F00;
else
stream[i] <<= 8;
}
ma_mutex_unlock(&organya_mutex);
}
bool AudioBackend_Init(void)
{
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.pDeviceID = NULL;
config.playback.format = ma_format_s16;
config.playback.channels = 2;
config.sampleRate = 0; // Let miniaudio decide what sample rate to use
config.dataCallback = Callback;
config.pUserData = NULL;
ma_result return_value;
return_value = ma_context_init(NULL, 0, NULL, &context);
if (return_value == MA_SUCCESS)
{
return_value = ma_device_init(&context, &config, &device);
if (return_value == MA_SUCCESS)
{
return_value = ma_mutex_init(device.pContext, &mutex);
if (return_value == MA_SUCCESS)
{
return_value = ma_mutex_init(device.pContext, &organya_mutex);
if (return_value == MA_SUCCESS)
{
return_value = ma_device_start(&device);
if (return_value == MA_SUCCESS)
{
output_frequency = device.sampleRate;
Mixer_Init(device.sampleRate);
return true;
}
else
{
Backend_PrintError("Failed to start playback device: %s", ma_result_description(return_value));
}
ma_mutex_uninit(&organya_mutex);
}
else
{
Backend_PrintError("Failed to create organya mutex: %s", ma_result_description(return_value));
}
ma_mutex_uninit(&mutex);
}
else
{
Backend_PrintError("Failed to create mutex: %s", ma_result_description(return_value));
}
ma_device_uninit(&device);
}
else
{
Backend_PrintError("Failed to initialize playback device: %s", ma_result_description(return_value));
}
ma_context_uninit(&context);
}
else
{
Backend_PrintError("Failed to initialize context: %s", ma_result_description(return_value));
}
return false;
}
void AudioBackend_Deinit(void)
{
ma_result return_value = ma_device_stop(&device);
if (return_value != MA_SUCCESS)
Backend_PrintError("Failed to stop playback device: %s", ma_result_description(return_value));
ma_mutex_uninit(&organya_mutex);
ma_mutex_uninit(&mutex);
ma_device_uninit(&device);
ma_context_uninit(&context);
}
AudioBackend_Sound* AudioBackend_CreateSound(unsigned int frequency, const unsigned char *samples, size_t length)
{
ma_mutex_lock(&mutex);
Mixer_Sound *sound = Mixer_CreateSound(frequency, samples, length);
ma_mutex_unlock(&mutex);
return (AudioBackend_Sound*)sound;
}
void AudioBackend_DestroySound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_DestroySound((Mixer_Sound*)sound);
ma_mutex_unlock(&mutex);
}
void AudioBackend_PlaySound(AudioBackend_Sound *sound, bool looping)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_PlaySound((Mixer_Sound*)sound, looping);
ma_mutex_unlock(&mutex);
}
void AudioBackend_StopSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_StopSound((Mixer_Sound*)sound);
ma_mutex_unlock(&mutex);
}
void AudioBackend_RewindSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_RewindSound((Mixer_Sound*)sound);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetSoundFrequency(AudioBackend_Sound *sound, unsigned int frequency)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_SetSoundFrequency((Mixer_Sound*)sound, frequency);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetSoundVolume(AudioBackend_Sound *sound, long volume)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_SetSoundVolume((Mixer_Sound*)sound, volume);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetSoundPan(AudioBackend_Sound *sound, long pan)
{
if (sound == NULL)
return;
ma_mutex_lock(&mutex);
Mixer_SetSoundPan((Mixer_Sound*)sound, pan);
ma_mutex_unlock(&mutex);
}
void AudioBackend_SetOrganyaCallback(void (*callback)(void))
{
ma_mutex_lock(&organya_mutex);
organya_callback = callback;
ma_mutex_unlock(&organya_mutex);
}
void AudioBackend_SetOrganyaTimer(unsigned int milliseconds)
{
ma_mutex_lock(&organya_mutex);
organya_callback_milliseconds = milliseconds;
ma_mutex_unlock(&organya_mutex);
}